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Impatience causes significant overhead
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• Networks are often very congested⇒ users receive poor service.

• Feldmann et al. (1999): 11 % of Internet data transfers are aborted prior
to completion; these transfers correspond to 20 % of the total traffic.



Main questions addressed in this talk
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• What is the fraction of users that terminate their job before completion?

• How much bandwidth is wasted on such users?

• How can we limit the impact of impatience?



Overview of this talk
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• Modeling impatience in bandwidth sharing networks.

• Performance Analysis.

• A remedy: Admission control.

• Reattempts.

• Summary.

• Related problems.



Modeling a bottleneck link in a bandwidth network
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• Bandwidth sharing networks often use a variant of the TCP protocol.

• Crucial property of TCP: If n identical users share the network for a long
time, they eventually receive the same service rate.

• Processor sharing (PS) is a service mechanism where the server serves
all customers at equal speed.

server



PS is a flow-level model for TCP
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• Example: if there are 5 customers in the system, then each customer is
served with rate 1/5. When an extra customer enters, all customers will
be immediately served with rate 1/6.

• Unlike TCP, PS adapts the long-term service rate immediately to the
new situation. Therefore, PS is an idealized version of TCP.

server

From now on, we approximate TCP with PS.



Challenge I: Traffic is bursty
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• LAN traffic vs. traffic
generated by conven-
tional model.

• Traffic is bursty at wide
range of time scales
(from 10 milliseconds to
100 seconds).

• Explanation and well-
established fact: File
sizes have infinite
variance.



Challenge II: Huge gap in queueing literature
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• The literature on FIFO queues with impatience is extensive, motivated
by call center applications.

• There is hardly any literature on PS queues with impatience. Exceptions
are Coffman et al. (1994) and Bonald & Roberts (2003).

• The reason is obvious. We encountered an exciting combination of three
complicated features:

– The system lacks memoryless properties.

– The system is not work-conserving due to impatience.

– Time-sharing allows customers to overtake: desirable, but intricate!



Processor sharing with impatience: the setup
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• Users arrive at the system according to a renewal process with rate λ.

• Service requirements have a general distribution, which may have infi-
nite variance.

• Each user has a lead time, which may be dependent on his service time.

• A user leaves due to impatience when his lead time expires.

• No upper bound on number of users simultaneously in the system.



Describing the model as a particle system
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Snapshot of the system with 5 users. "Particles" move to the left with rate
1/5 and downwards with rate 1.



Reducing model complexity by fluid scaling
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• Z(t): number of customers at time t.

• Z(t), t ≥ 0 is a complicated non-Markov process.

• Therefore, we consider a fluid scaling. Informally, we scale time and
space by a factor r, and replace the lead times Di by rDi.

• Interpretation: Server works at rate r, and customers arrive at rate λr.



Main convergence results
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Assume that the system is overloaded: ρ = λE[B] > 1.

Theorem 1 (approximation of time-dependent behavior)
There exists a continuous function z(·) such that 1

r
Z(rt) → z(t).

Theorem 2 (approximation of steady-state behavior)
If ρ > 1 and also

λE[B1{D=∞}] < 1, E[min{B, D}] < ∞,

then z(t) → z as t →∞, with z the positive solution of the equation

z = λE[min{zB,D}].



Number of customers at time t
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The process z(·) approximates the number of customers in the system.

z(t) = z0P[B0 > S(0, t), D0 > t] + λ

∫ t

0
P[B > S(s, t), D > t− s]ds,

with

S(s, t) =

∫ t

s

1

z(u)
du.

• S(s, t) is the total service rate between time s and time t.

• z0P[B0 > S(0, t), D0 > t]: total "mass" at time 0 which is still in the
system at time t.

• P[B > S(s, t), D > t − s]: fraction of mass arrived at time s which is
still in system at time t.



Modeling impatience in TCP: Summary
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• We approximated TCP by an idealized version: PS.

• PS with impatience is still too complicated to analyze.

• A fluid approximation reduced the random process to a fluid model.

• Steady-state is approximated by the simple fixed-point equation

z = λE[min{zB,D}].



Overview
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• Modeling impatience in TCP networks.

• Performance Analysis.

• A remedy: Admission control.

• Reattempts.

• Summary.

• Related problems.



Interpretation of the fixed point equation
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Let Zr be the steady-state number of users.

Let V r be the steady-state sojourn time of a user.

V r = min{V r
p , rD} with V r

p the potential sojourn time (if the customer
would not be impatient).

Little’s law:
E[Zr] = λE[V r] = λE[min{V r

p , Dr}].

What is V r
p ?



Combining Little’s law and the snapshot principle
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If the number of customers in the system is approximately constant during
a customer’s sojourn time as r becomes large, then

V r
p = (Zr + o(r))B.

This is called the snapshot principle: in equilibrium, a customer does not
observe any fluctuations of the system during his sojourn.

Combined with Little’s law, this gives:

E[Zr] = λE[min{(Zr + o(r))B, rD}].

Divide both sides by r and let r →∞ to get

z = λE[min{zB,D}].



Performance measures
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• Number of users in the system: rz, with

z = λE[min{zB,D}].

• Fraction of users that do not renege: Ps = P[zB < D].

• Server utilization: ρs = λE[B; zB < D].

• Time-dependent reneging rate d(t).



Will it help to make customers more patient?
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• Suppose that customers become twice as patient.

• How much will the fraction of successful customers Ps increase?

Answer: Ps will not increase at all!

Lesson: If the system is overloaded, the average lead-time is not important.



Making customers more patient helps temporarily
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Time-dependent behavior of the reneging rate d(t) for a system which is in
equilibrium at time 0 and in which customers arriving after time 0 are twice
as patient as before time 0. (λ = 2, µ = 1, ν0 = 2, ν1 = 1)
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Ps,new = Ps,old – proof is quite simple
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zold = λE[min{zoldB, D}].

2zold = λE[min{2zoldB, 2D}].

znew = λE[min{znewB, 2D}].

⇒ znew = 2zold

Ps,new = P[znewB < 2D]

= P[2zoldB < 2D]

= P[zoldB < D]

= Ps,old.



Example 1: Linearly dependent lead times

JJ J N I II 22/43JJ J N I II 22/43

Take D = ΘB, with Θ and B independent.
Θ reflects the average service level expected by a customer.

If Θ is a constant θ (say), then

z = ρ min{θ, z}.

implying that z = ρθ.

Consequently:

Ps = P[D > zB] = P[θ > z] = P[θ > ρθ] = 0.

All users in the system will be impatient!!



Here is an illuminating picture
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All mass initially "lands" on the slope y = θx and moves towards the south-
west with direction (1, 1/(θρ)).



How the system is crashing
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• If the system starts empty, there is initially no impatience.

• When z(t) reaches 1/θ, there is a sharp phase-transition: Suddenly, ev-
erybody becomes impatient.

• Holds for all service-time distributions!

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1



The impact of variability
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Other extreme: Users are either extremely patient or extremely impatient.

Θ = ε with probability p and Θ = M with probability 1 − p. In that case,
the server utilization ρs can be as close to 1 as desired.

More variability in lead times has a positive effect on system performance.

In particular: more variability implies a higher service rate:
Compare two systems with identical λ, B but with different Θ1 and Θ2.

Proposition. If Θ1

icx

≥ Θ2, then z1 ≤ z2.



Example II: Independent lead times
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• We now assume that B and D are independent.

• We compare limiting values under different assumptions on the distri-
butions.

• In all cases, ρ = 1.5, E[B] = E[D] = 2 and B and D either have an
exponential distribution or a Pareto distribution with tail (1 + x)−1.5.

B exp B par
D exp z = 0.5000 z = 0.1174
D par z = 0.2067 z = 0.0505

More variability is always good!



Getting the time-dependent solution is possible
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If D has an exponential with rate ν and z(0) = 0, then

z(t) = λ

∫ t

0
e−ν(t−s)P[B >

∫ t

s

1

z(u)
du]ds.

The solution is remarkably simple:

z(t) = (1− e−νt)z.

In general, one can obtain z(t) numerically by Picard-iteration.



Performance analysis: summary

JJ J N I II 28/43JJ J N I II 28/43

• Making customers more patient does not affect system performance in
the long run.

• More variability leads to better system performance.

• Positive dependence between service times and lead times negatively af-
fects system performance.

• Scenarios are possible in which almost all customers renege: The impact
of reneging can be substantial.



Overview
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• Modeling impatience in TCP networks.

• Performance Analysis.

• A remedy: Admission control.

• Reattempts.

• Summary.

• Related problems.



Controlling the impact of impatience
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• To reduce the impact of impatience, one could perform admission con-
trol, i.e. bound the total number of customers in the system by some
constant K .

• Trade off: customers may be blocked, but admitted customers are served
at a higher rate, reducing the probability of reneging.

• Is it possible to improve system performance by admission control?



Admission control: Analysis
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• Let qK be fraction of customers that are admitted to the system.

• By Little’s law, zK = λqKE[min{zKB, D}].

• Observe that qK = 1 if zK < K . Consequently, zK = min{z, K}, with
z the solution of the equation z = λE[min{zB,D}].

• If zK = K , then qK can be solved from the above equation for zK .



Maximizing server utilization
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• The fraction of successful customers is given by VK = qKP[zKB < D].

• It can be shown that VK → 1/ρ if K ↓ 0 (small buffer). If the buffer is
small, there is almost no reneging.

• This implies that the server utilization converges to 1 as K ↓ 0.

• Hence, it makes sense to keep a small buffer in order to maximize the
server utilization.



Maximizing user satisfaction
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Things are not so clear when one aims tomaximize the fraction of successful
customers:

• When D = ΘB, VK is optimized by letting K become small.

• When D is constant and P[B > x] =
(

a
a+x

)b
, then VK is maximized by

performing no admission control at all (K = ∞).

Conclusion: Admission control increases the server utilization and some-
times also the fraction of successful transmissions.



Overview
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• Modeling impatience in TCP networks.

• Performance Analysis.

• A remedy: Admission control.

• Reattempts.

• Summary.

• Related problems.



Extending the model to Reattempts
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Typical user behavior: Impatient users of the Internet tend to click first on
STOP and after that, immediately on REFRESH.

Assume that a customer, after having left the system due to impatience,
retries immediately with probability p ∈ (0, 1).

server

server

Reattempt



Reattempts cause bi-stability!
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• The fixed-point equation becomes

z = λE[min{zB,D}] +
p

1− p
λP[zB > D]E[D | D < zB].

• Can have strictly positive solution, even if ρ < 1.

• Intuition: the system is bi-stable. For large, but finite r, the system can
experience long periods during which there is a substantial reneging
rate.



Summary and Conclusions
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• The impact of impatience in overload can be substantial.

• More variability leads to better system performance.

• If the system is not overloaded, reattempting customers can have a sig-
nificant impact.

• The impact of impatience can often be reduced by a simple admission
control rule.



Overview
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• Modeling impatience in TCP networks.

• Performance Analysis.

• A remedy: Admission control.

• Reattempts.

• Summary.

• Related problems:

1. Impact of scheduling on long sojourn times.

2. Bandwidth sharing with heterogeneous flow sizes.



Impact of scheduling on long sojourn times
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• Consider a system where several users share a common server.

• Service requirements are heavy-tailed: P[B > x] ≈ x−α.

• Which scheduling should one use? FIFO, or something more sophisti-
cated?

• Usually, one compares average sojourn times.

• My research has focused on the impact of scheduling on long sojourn times



If you stay in the system for a long time...
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... it’s your own fault:

Zwart (ITC 1999), Zwart & Boxma (Questa 2000):

P[V > x] = P[B > x(1− ρ)](1 + o(1)).

load

bandwidth dedicated to other users

0 x

For FIFO: Long sojourn times are much more likely, and are caused other
by another customer: NOT FAIR!



Bandwidth sharing with heterogeneous flow sizes
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2

server

1

• Two classes of users share a link, all users receive the same service rate.

• Class 1 is well behaved: exponentially distributed service requirements.

• Class 2 is behaving badly: Heavy-tailed (Pareto) service requirements.

Question: Is class 1 well-protected from class 2?



Quality of Service for well-behaved users?
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QoS for class 1 users: Large sojourn times should not happen too often.

It would be helpful if P[V1 > x] ≈ e−γx.

This would the case if class 2 is not present.

Borst/Nunez/Zwart (ITC2003): ∃δ > 0:

P[V2 > x] ≥ e−δ
√

x.

Users of class 2 have negative impact on QoS of class 1, so class 1 is NOT
well-protected!



Solution: Admission control!
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Upper bound the total number of users by N < ∞.

Then P[V1 > x] has an exponential tail!

Important reason: In the system with blocking, there is a minimum guar-
anteed service rate: 1/N , so

Sojourn time ≤ N × service time.


